7,681 research outputs found

    Development of anion-selective membranes

    Get PDF
    Methods were studied of preparing anion-exchange membranes that would have low resistance, high selectivity, and physical and chemical stability when used in acidic media in a redox energy storage system. Of the twelve systems selected for study, only the system that was based on crosslinked poly-4-vinylpyridinium chloride produced physically strong membranes when equilibrated in l M HCl. The resistivity of the best membrane was 12 ohm-cm, and the transference number for chloride ions was 0.81

    Commutators in the Two-Weight Setting

    Get PDF
    Let RR be the vector of Riesz transforms on Rn\mathbb{R}^n, and let μ,λAp\mu,\lambda \in A_p be two weights on Rn\mathbb{R}^n, 1<p<1 < p < \infty. The two-weight norm inequality for the commutator [b,R]:Lp(Rn;μ)Lp(Rn;λ)[b, R] : L^p(\mathbb{R}^n;\mu) \to L^p(\mathbb{R}^n;\lambda) is shown to be equivalent to the function bb being in a BMO space adapted to μ\mu and λ\lambda. This is a common extension of a result of Coifman-Rochberg-Weiss in the case of both λ\lambda and μ\mu being Lebesgue measure, and Bloom in the case of dimension one.Comment: v3: suggestions from two referees incorporate

    The Static Dielectric Constant of a Colloidal Suspension

    Full text link
    We derive an expression for the static dielectric constant of the colloidal susp ensions based on the electrokinetic equations. The analysis assumes that the ions have the same diffusivity, and that the double layer is much thinner than the radius of curvature of the particles. It is shown that the dielectric increment of the double layer polarization mechanism is originated from the free energy stored in the salt concentration inhomogeniety. We also show that the dominant polarization charges in the theory are at the electrodes, rather than close to the particles.Comment: 15 pages, 1 figur

    Analytical Models for the Energetics of Cosmic Accretion Shocks, their Cosmological Evolution, and the Effect of Environment

    Get PDF
    We present an analytical description of the energetics of the population of cosmic accretion shocks, for a concordance cosmology. We calculate how the shock-processed accretion power and mass current are distributed among different shock Mach numbers, and how they evolve with cosmic time. We calculate the cumulative energy input of cosmic accretion shocks of any Mach number to the intergalactic medium as a function of redshift, and we compare it with the energy output of supernova explosions as well as with the energy input required to reionize the universe. In addition, we investigate and quantify the effect of environmental factors, such as local clustering properties and filament preheating on the statistical properties of these shocks. We find that the energy processed by accretion shocks is higher than the supernova energy output for z<3 and that it becomes more than an order of magnitude higher in the local universe. The energy processed by accretion shocks alone becomes comparable to the energy required to reionize the universe by z~3.5. Finally, we establish both qualitative and quantitatively that both local clustering as well as filament compression and preheating are important factors in determining the statistical properties of the cosmic accretion shock population.Comment: 13 pages, 5 figures, emulateap

    The evolution of the star forming sequence in hierarchical galaxy formation models

    Full text link
    It has been argued that the specific star formation rates of star forming galaxies inferred from observational data decline more rapidly below z = 2 than is predicted by hierarchical galaxy formation models. We present a detailed analysis of this problem by comparing predictions from the GALFORM semi-analytic model with an extensive compilation of data on the average star formation rates of star-forming galaxies. We also use this data to infer the form of the stellar mass assembly histories of star forming galaxies. Our analysis reveals that the currently available data favour a scenario where the stellar mass assembly histories of star forming galaxies rise at early times and then fall towards the present day. In contrast, our model predicts stellar mass assembly histories that are almost flat below z = 2 for star forming galaxies, such that the predicted star formation rates can be offset with respect to the observational data by factors of up to 2-3. This disagreement can be explained by the level of coevolution between stellar and halo mass assembly that exists in contemporary galaxy formation models. In turn, this arises because the standard implementations of star formation and supernova feedback used in the models result in the efficiencies of these process remaining approximately constant over the lifetime of a given star forming galaxy. We demonstrate how a modification to the timescale for gas ejected by feedback to be reincorporated into galaxy haloes can help to reconcile the model predictions with the data.Comment: 30 Pages, 16 Figures, MNRAS accepte

    Multiparameter Riesz Commutators

    Full text link
    It is shown that product BMO of Chang and Fefferman, defined on the product of Euclidean spaces can be characterized by the multiparameter commutators of Riesz transforms. This extends a classical one-parameter result of Coifman, Rochberg, and Weiss, and at the same time extends the work of Lacey and Ferguson and Lacey and Terwilleger on multiparameter commutators with Hilbert transforms. The method of proof requires the real-variable methods throughout, which is new in the multi-parameter context.Comment: 38 Pages. References updated. To appear in American J Mat

    Distribution of the very first PopIII stars and their relation to bright z~6 quasars

    Full text link
    We discuss the link between dark matter halos hosting the first PopIII stars and the rare, massive, halos that are generally considered to host bright quasars at high redshift z~6. The main question that we intend to answer is whether the super-massive black holes powering these QSOs grew out from the seeds planted by the first intermediate massive black holes created in the universe. This question involves a dynamical range of 10^13 in mass and we address it by combining N-body simulations of structure formation to identify the most massive halos at z~6 with a Monte Carlo method based on linear theory to obtain the location and formation times of the first light halos within the whole simulation box. We show that the descendants of the first ~10^6 Msun virialized halos do not, on average, end up in the most massive halos at z~6, but rather live in a large variety of environments. The oldest PopIII progenitors of the most massive halos at z~6, form instead from density peaks that are on average one and a half standard deviations more common than the first PopIII star formed in the volume occupied by one bright high-z QSO. The intermediate mass black hole seeds planted by the very first PopIII stars at z>40 can easily grow to masses m_BH>10^9.5 Msun by z=6 assuming Eddington accretion with radiative efficiency \epsilon~0.1. Quenching of the black hole accretion is therefore crucial to avoid an overabundance of supermassive black holes at lower redshift. This can be obtained if the mass accretion is limited to a fraction \eta~6*10^{-3} of the total baryon mass of the halo hosting the black hole. The resulting high end slope of the black hole mass function at z=6 is \alpha ~ -3.7, a value within the 1\sigma error bar for the bright end slope of the observed quasar luminosity function at z=6.Comment: 30 pages, 9 figures, ApJ accepte

    Multi-Parameter Div-Curl Lemmas

    Full text link
    We study the possible analogous of the Div-Curl Lemma in classical harmonic analysis and partial differential equations, but from the point of view of the multi-parameter setting. In this context we see two possible Div-Curl lemmas that arise. Extensions to differential forms are also given.Comment: v1: 8 page
    corecore